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In this paper we introduce Meteor, an executable software process 
modeling formalism, which is designed around the idea of a process­
centered software lifecycle paradigm. We also introduce Orbit, the meta­
environment that supports the development of Meteor models. 

Every environment should incorporate at least an implicit and 
preferably explicit model of the process it supports, and hence no single 
fixed environment can be expected to satisfy all users' needs. Users need 
to be able to adapt their processes and hence tailor their environments. 
Meteor is a process rnodeling formalism which captures most of the capa­
bilities needed for modeling both static and dynamic views of software 
processes. Meteor is not only a process modeling facility but also an 
environment integration mechanism and a virtual machine for executing 
process models. The interconnection model supported by Meteor not 
only suggests a new model of software development but also proposes a 
facility for propagating and automatically manipulating maintenance 
requests applied to the model. Meteor components are reusable, pro­
grammable, and self adaptable. 

The Orbit meta-environment prototype is designed to support 
software environment development by modeling of underlying develop­
ment processes, using the Meteor formalism. Orbit applies main terrance 
techniques in developing process environments. 
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1. Introduction 
Providing adequate support for developing and maintaining high quality software 

is a critical need. While environments to effectively support software development are 
now emerging, they provide only limited and incidental support for maintenance. Most 
people believe that "improving development improves maintenance," and that, there­
fore, software development environments also support maintenance. We believe that 
environments to support maintenance have additional and different needs. Because 
main terrance varies so widely in conceptualization and practice, it seems unlikely that 
any single environment (and certainly not one designed to support development) can 
satisfy all of these needs [Gamal 88-b]. 

A maintenance environment must be unusually flexible and extensible in order to 
meet the requirements imposed by different development processes. Maintainers need 
to be able to customize their environments by tailoring them and integrating new tools, 
and they also need facilities to support incremental adaptation of the environment itself 
to meet the continuous evolution of external conditions. We believe that allowing users 
to tailor and continuously change their environments is equivalent to allowing for the 
modeling of the processes which are to be supported by that environment. Thus we 
conclude that an effective maintenance environment should be based upon the notion of 
process modeling. 

Process modeling helps maintenance in at least two key ways. First, if mainte­
nance process models are sufficiently tangible and precise, they suppor.t process monitor­
ing and evaluation that leads to adaptation and improvement. Second, explicit 
development models can be used to help capture development process information 
which materially facilitates the understanding and evaluation phases of maintenance 
[Fay 85]. 

Process programming [Osterweil 86, 87, Gamal 88-c] is a process modeling tech­
nique that is based on the notion that software processes should be considered to be 
software themselves, and that they can be explicitly modeled and programmed in the 
same ways that software products can. This implies that process programs themselves 
need support environments for their development and execution. That is, we need 
environments to support developing, activating, evaluating, and maintaining environ­
ments. Environments of this sort have been called meta-environments, [Sorenson 88]. 
Meta-environments support the tailoring of an environment by adjusting its 
specifications, within certain bounds. The environment thereby produced falls within a 
certain class which is implicitly defined by the meta-environment designer. Process 
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programming suggests using programming language features to specify this class. Thus 
programming techniques are used to explicitly model the maintenance process to be 
supported by the environment. In this sense process programming is like conventional 
application programming. On the other hand, software processes entail very long term 
execution, require persistent object manipulation, involve careful specification of 
human-computer interactions, and must be dynamically customized and evolved. These 
are important characteristics in distinguishing process programs from applications pro­
grams. Our efforts to understand and effectively model these distinctions have led to 
new perspectives on maintenance as a process and to an improved model of the entire 
software lifecycle [Carnal 88-c) - namely, the process-centered software lifecycle para­
digm - which unifies development and maintenance for both products and processes. 
Supporting such a paradigm in the form of a meta-process environment is the main 
theme of this paper. 

Section 2 gives a brief description of some of the essential characteristics of known 
software environments. This discussion is aimed at focusing on the failures of known 
environments in meeting important requirements and on those features which we feel 
are needed for process programming environments. Section 3 of this paper discusses the 
benefits of the process-centered life cycle paradigm and characterizes maintenance from 
the perspective of process programming. It also highlights some of the demanding 
characteristics of a process programming support environment. In section 4 we in tro­
duce Meteor, a process modeling facility which is the core component and virtual 
machine of the Orbit environment as well as its major integration facility. Meteor is a 
programmable information flow- based tool for constructing environment prototypes. It 
provides automatic propagation and interchange of information between the different 
interdependent environment model components. Section 5 introduces the high level 
architecture of Orbit, the proposed meta-process environment prototype. Orbit supports 
both development and maintenance of process environments throughout their process­
centered lifecycle. It also supports development as an advanced maintenance process. 
Section 6 presents a summary and some conclusions. 
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2. Background and Related Work 
Early software support environments have had numerous severe limitations. They 

have been costly to develop, they have been hard to modify, they have implicitly sup­
ported relatively fixed processes, they have focussed on restricted aspects of the software 
lifecycle, and few have addressed maintenance. 

Perhaps the best known and most numerous of these past environments have been 
Language-centered environments, such as Interlisp [Teitelman 81], and Smalltalk [Gold­
berg 84]. In these systems both the environment and the application program are 
embedded in the same address space as a single monolithic system. This makes all the 
features of the environment available to the application as building blocks. These 
environments support coding very well, but are ill suited to support phases other than 
coding. Such environments support maintenance in different ways. They provide main­
tainers with program browsers to examine program structure and interactively deter­
mine the scope of a change, however the user is fully responsible for determining his/her 
browsing algorithm. Furthermore, incremental interpretation and dynamic linking allow 
incremental implementation. The portability of application programs developed in 
language-centered environments is very poor because the programs are highly depen­
dent upon, and integrated to, their environments. In addition, they are language 
specific and impossible to extend to cover phases other than coding. 

Structure-oriented programming environment generation systems (such as the 
Cornell program synthesizer [Teitelbaum 81], and Gandalf [Habermann 86]), are 
language independent and highly portable, yet still support only the coding process. 
The graphical representations of program structures which they provide are very useful 
in both design and maintenance. Manipulating these program structures seems much 
easier and less error prone than manipulating code, for maintainers who are rarely 
involved in program development. The process supported by structured-oriented 
environments is difficult to extend to support other lifecycle phases, however, and so is 
the accommodation of new tools. 

Toolkit environments, such as Unix, on the other hand, use operating system facil­
ities to glue tools into collections. The intent is to provide a language-independent 
environment that supports multiple languages with appropriate tools. Such environ­
ments allow a high degree of tailoring but provide little process-based management of 
the use of these tools. Furthermore, they have a very simple data model for tool 
interaction and persistent object storage. No structure or semantic information is 
recorded with the data which results in tools with few incremental processing capabili­
ties. Thus, although maintenance tools may be designed and integrated into such 
toolkit environments, these environments do not themselves provide much active assis­
tance to the tools for maintenance of large systems. The simple data model of tool 
interconnection eases the integration of new tools into the environment, but process 
modeling and tool integration are considered the user's responsibility. Process modeling 
(and hence process environments) entails the integration of processes which interact 
with each other in complex ways, and therefore require highly structured data models. 
These data models need more advanced data and object management than those found 
in toolkit environments. 

Method-based and CASE environments (e.g. VDM-based environments [Terwil­
liger 87] and IDE [IDE ]) compensate for the loose coupling of tools in toolkit environ­
ments by representing a particular process based on a specific fixed development 
method which is to be used by individual developers in phases such as requirements 
analysis, specification, and design as well as in product and project management. Suc­
cessful method-based environments have an underlying theoretical model against which 
a particular process description can be verified. Processes modeling semiformal methods, 
such as SADT, CORE, PSL/PSA, and SREM, as well as more formal methods such as 
those focused on Petri nets, state machines, and VDM, all exist. None of these methods 
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support all program development phases. 
Although meta-environments [Sorenson 88] have been created to allow tailoring 

method-based environments within a predefined specific framework, they are still tied to 
one or two phases of the development cycle. Meteor provides a more flexible method for 
tailoring processes which can then, moreover, be viewed from different perspectives. In 
fact, the Meteor formalism seems able to cover the capabilities of all the methods dis­
cussed above. 

In summary, different classes of environments use different techniques to achieve 
different goals and benefits. Full integration is achieved in language-centered environ­
ments by integrating the application with its environment into a single monolithic sys­
tem. Although high power and increased programming productivity are observed, poor 
portability is expected. Porta bill ty is improved in structure-oriented environments 
which deal more with program structures. This approach also leads to increased main­
tainability and modifiability, but is poorly sui ted to supporting integration of new tools. 
Toolkit environments provide better support for integrating new tools, but rely upon a 
very naive notion of data types and incorporate no process representation at all. Sim­
ple processes exist in CASE environments in the form of limited and inflexible methods 
which aid one phase of the software cycle only. Furthermore, CASE environments do 
not effectively integrate the specification of human activities with the specification of 
tool supported activities. In addition, none of these environments provides explicit 
representation of the underlying process, if it exists at all, nor allows tailoring or adapt­
ing the process or the environment itself. 

Process programming environments offer the promise of being more flexible and 
providing a broader range of support for the software development and maintenance 
processes. They provide mechanisms for supporting not only the production phases 
but also process planning, scheduling, control, and resource management in a highly 
flexible and programmable way. Above all, they allow tailoring and adapting the expli­
citly represented underlying process, and hence tailoring the environment itself to 
achieve evolving goals and meet changing constraints. 

3. Process Progranuning and the Process-Centered Software Lifecycle 
We seek to build environments capable of effectively supporting software mainte­

nance, by making these environments tailorable, flexible, and extensible. Our 
approach is to support the explicit representation of maintenance processes as process 
programs which are to be interpreted by our environment. These process programs are 
to be developed by process engineers applying maintenance techniques with the help of 
the environment itself, and are to be maintained (in order to yield the flexibility we 
desire) with the help of the environment also. 

3.1. New Perspectives on l\1aintenance in the Context of Process Programming. 
Clearly process-centered environments. place new and demanding constraints and 

requirements upon environment builders [Gamal 88-b,c]. We now summarize some of 
these requirements and constraints. 

Explicit process representation. A process environment must contain an expli­
cit model describing the process that it supports, and must support interpretation ( exe­
cution) of that model. 

Incorporation of Humans. The environment must support the definition of the roles 
of humans in the process (e.g. process organization and personnel, skills and education, 
and the roles and methods of communication.) 

Openness to augmentation by new object types and tools. "Tools" in the 
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process programming con text are analogous to operators in classical programming 
languages. Both the input operands and the output results of the operators are con­
sidered to be instances of types which must be defined in the process program. Thus 
process programs must be expressed in a language which is type and operator extensi­
ble. 

Persistent object manipulation. Objects must be stored and managed by an object 
manager which incorporates a typing system, authorization access control, a locking 
mechanism, and a storage system. The object manager must be able to update existing 
persistent objects in accordance with new process changes to guarantee consistency. 

Software processes have some other characteristics which make their support an 
even more demanding challenge. For example, they execute over very long periods of 
time, and they incorporate humans as execution agents. As a consequence an execut­
ing software process incorporates a learning process, which implies the need for con tinu­
ous evolution of the process, even during the course of its execution. Hence, a process 
development support environment must be; 

Customizable. The degree of support and leadership specified in a process program 
may vary widely. The purpose of the process program is to specify and enforce only 
that which the process programmer wishes to specify. 

User-tailorable. Every individual involved in executing the process must be given 
the facility to tailor his or her share within the higher level management-drawn frame­
work. 

Incrementally implementable. Understanding of any process is usually gained 
by experiencing it, making it particularly hard to completely specify the process before~ 
hand. This suggests that the process program is best evolved dynamically, and imple­
mented incrementally. 

Dynamically adaptable. Effective evolution of a running process has to be done in 
such a way that it does not cause the needless waste of software objects which have 
already been developed and that minimizes human efforts by maintaining the process 
execution history as well. 

These characteristics demand the development of software processes which incor­
porate advanced maintenance techniques. These new techniques can be applied to 
both process and product maintenance yielding more powerful and sophisticated 
environments. These techniques provide new perspectives on software maintenance 
activities and their support environments [Gamal 88-c] which are characterized as fol­
lows; 

Process maintenance. A process may be maintained for the sake of its own 
improvement, or to improve product quality. 

Product-related process maintenance. In most cases the changed (maintained) 
process is executed from scratch to produce new products which have important similar­
ities to the products produced before maintenance, but which have distinct desired 
differences as well. 

Static Maintenance. The static descriptions of both products and processes must 
be subject to maintenance. 

Dynamic maintenance. Iterative and continuous improvements to processes 
are to be expected, even during the courses of their execution. 
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Execution history maintenance. Dynamic maintenance implies that existing per­
sistent objects must be updated in accordance with process changes to guarantee their 
consistency with the changes and to take full advantage of earlier human efforts. 

Product-related process history maintenance. Classically, the formalisms by 
which the product is specified and the relations among the different objects of the pro­
duct are all considered key to guiding maintenance. Alternatively, maintaining the his­
tory of the reactivated process by changing the values of some of the previously 
developed persistent objects it deals with, is a more appropriate and efficient method for 
maintaining products. 

The newly in traduced maintenance notions of process and dynamic maintenance 
as well as the related ideas of history maintenance and product-related process mainte­
nance form the basis for the new software lifecycle paradigm shown in figure 1 -
namely, the process-centered paradigm [Gamal 88-c] which combines both maintenance 
and development. 

( 
,.,----,~~~ 

(lnce)~on Valid\an~~ 
STATIC 

PROCESS CYQ.E 

~~ .. ~c:/CJ 

PRODUCT CYCLE 

EXEOffiON 
(opel'lltion) 

HISTORY UPDATE 

" lncremenul 
!nu:gration 

DYNAMIC I ' 
PROCESS CYQ.E ~ J 

Incremental lncremenul 
Definition Production 

\~~,-~::f) 
Des1gn ___.., Ox:clcs 

Figure 1. The Process-Centered Software Lifecycle. 

3.2. Sotre Characteristics of a :rvfaintenance-Ba.sed Process Envirorurent. 
Environments for supporting the maintenance of process programs will share some 

of the characteristics of environments for classical application software, but will also 
have to satisfy important new requirements. For example, where classical environments 
might be quite useful even if they support only static maintenance, it is essential that a 
process programming environment support both static and dynamic maintenance. In 
attempting to meet these harder requirements, process programming environments will 
have to incorporate some new tools that will be challenging to develop. 

For example, the activity of coming to understand programs should be as 
automatic and powerful as possible, and it should support rapid responses to user 
queries. New sorts of analyses are required to support rapid reply to queries in the con­
text of dynamic maintenance. Query response must be based upon the analysis of 
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execution histories which must be kept up to date as execution of the process proceeds. 
In addition, we expect that different types of users (e.g., workers and managers) will 
each need to pose queries, suggesting that the responses might have to be different as 
well. 

New and difficult tools must also be developed to support the subprocess of assess­
ing and evaluating changes. Before confirming proposed changes, they must be shown 
to be correct and consistent with other program structures and software objects. For 
example, changing the type of a component of a software process operand (e.g. a 
requirement element) may be relatively straightforward in a static situation. The 
change is made, and affected programs are then recompiled and rerun. In a process 
programming environment, however, one must expect that this sort of change will have 
to be made dynamically-as the process program is executing. In this case it is neces­
sary to reevaluate the program code involved in producing that component as well as 
code which is involved in relating it to other software objects. The execution history 
must also be reevaluated to see if changes must be made to previously created per­
sistent instances of the operand type. Clearly it would be far easier to simply rerun the 
process program after each such modification, but this is usually impractical or impossi­
ble. Thus a process programming support environment should incorporate a facility for 
dynamic reevaluation. Reevaluation differs from reexecution in that it simulates the 
execution of only those statements which have been affected by changes which have 
taken place. This is a new sort of optimization which is necessary in order to assure 
that dynamic main terrance can be done rapidly. 

The essence of reevaluation is to assure that changes are consistent with the syn­
tactic and semantic constraints of the programming language as well as the pragmatic 
constraints imposed by the nature of the problem. Language syntactic constraint viola­
tions are relatively easy to detect statically. However, many semantic and pragmatic 
constraints are hard if not impossible to evaluate statically because of their dynamic 
nature. This suggests that dynamic constraint checking (e.g., by means of assertions) 
and dynamic constraint propagation are key techniques in dynamic process program 
maintenance. It must be noted that even these dynamic checks can not guarantee 
absolute correctness, as they can at best only assure consistency and correctness up to 
the current point of execution. Proposed changes might still set up inconsistent or 
incorrect behavior later on. Thus still further complex tool support is suggested. 

A key capability of the tools and processes needed to support dynamic mainte­
nance is ripple effect analysis. Ripple ef feet analysis is essentially a recursive opera­
tion, which relies upon representations of the interdependencies of the various program 
objects and those objects which have been changed. Some changes may be entirely 
local, and have no effect on other program entities, while others may propagate widely 
to eventually affect many other entities. Static ripple effect analysis seems to rest upon 
relatively better understood principles and structures [Feldman 79, Hudson 86, Clemm 
89], but dynamic ripple effect analysis seems far harder, and seems to require the need 
for analyzing and adjusting execution histories. This seems to require the development 
of difficult new tool technology. 

To explain the differences between the two types of ripple effects analyses, let us 
consider, for example, the result of changing the value of an object at some point in the 
execution history. That may cause a ripple effect leading to the reevaluation of other 
variables and the eventual reevaluation of flow of control predicates which may then 
cause the execution of a different path through the program. Thus the environment 
must detect when reevaluation has caused execution of a new path, and must then roll 
back to the earliest deviation point, and restart execution from this point. It is even 
possible that a change may cause execution of a new path which criss-crosses the old 
execution path, raising the possibility of different rollback points. A specially devised 
algorithm may be needed to select an optimal roll back point from which to resume 
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execution. Looping causes even more serious problems. 

Coarse grain module inter- relationship analysis is an excellent support for ripple 
effect detection in classical static maintenance. Finer granularity is required in the case 
of dynamic maintenance, however, especially for process programs, since this main te­
rrance may be requested by users who are working at different metalevels and different 
levels of abstraction. Thus, what is considered to be an operator by some user, might 
be a process to other users. For example, process program maintenance may necessitate 
the replacement of a tool (operator) by another which may have either the same or 
different semantics. Portraying the impact of such a replacement to different users 
en tails different analysis and different user interface capabilities. Similarly type 
definitions must also be expected to change periodically during the execution of a pro­
cess program. Consideration of the need to make such substantive changes during the 
execution of process programs led us to decide that even the basic elements of program­
ming languages must be thought of as potential subjects of ripple effect analysis in a full 
process programming support environment. 

Retesting is another very important activity in the main terrance process. In classi­
cal static main terrance, regression tests, dynamic debugging, static analysis of the 
changed program, and coverage tests are methods used for assuring correct changes. 
Those techniques are not adequate to support dynamic maintenance, since dynamic 
main terrance is carried out during the actual execution of the process. Supplementary 
techniques such as history main terrance, execution monitoring, and dynamic constraint 
checking are needed as. well. 

Another requirement of a process programming maintenance environment which is 
particularly difficult to satisfy is that it should be able to support main terrance of 
software objects developed using different languages. Even for a single software pro­
duct, we must expect that various of its component objects, e.g. the requirement ele­
ments and design specification elements, are legal strings in different languages. Each 
language has its own syntax, semantics, and constraints upon which similar mainte­
nance analysis could be done. Hence, ideally, the maintenance environment should sup­
port maintenance of software objects expressed in any language, given the language 
definition. This last characteristic imposes severe restrictions on the design and imple­
mentation of the environment and on all of its components and tools. Environment 
components must be built in such a way as to be language customizable. That is, gen­
eral tools must be built so as to employ given language specifications for customizing 
generically built tools (e.g., by using operator overloading.) 

In summary, the characteristics of a process programming main terrance-based 
environment requires quite a different approach to, and perspective on, the maintenance 
process as a consequence of the dynamic nature of the programs it is supporting. Figure 
2 is a high level architecture describing the relationships among the different com­
ponents comprising Orbit, the proposed prototype for a maintenance-based process 
environment. A more detailed description· of Orbit's architecture is given in section 5, 
while Orbit's kernel and integration mechanism-Meteor-is introduced in the next sec­
tion. 

4. J\1eteor- A Process l\1od.eling Forrmlism 
and Environ.trent Integration lVfechanism 

Orbit views the process of modeling and developing software processes as an ela­
borate maintenance process. We believe that almost all the problems encountered in 
maintenance can be classified into two categories -problems related to program under­
standing, and problems related to studying the propagation and ripple effects of 
changes. Each of these types of problems is exacerbated by the unavailability in existing 
environments of explicit representation of the program constituents and their connect­
ing and interdependence relations. Meteor supports the depiction of such relations in 
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different views and on different levels of abstraction in order to facilitate both static and 
dynamic maintenance of the model. Once the process model (program) is designed and 
its interdependence relations are established (hopefully from reusable process com­
ponents), Meteor provides a mechanism for automating the propagation and analysis of 
changes applied to the model or its constituting entities. This is a considerable mainte­
nance (and development) aid. 

In fact, each of the various existing software process modeling methods is special­
ized to support a specific domain and view. Petri net-based models, for example, are 
used in the analysis of dynamic behaviors of concurrent processes [Peterson 81], while 
state machines (which in some cases are equivalent to Petri nets [Reisig 85] are good 
representations of program state evolution but they do not indicate how a transition is 
executed. On the other hand, CORE [Mullery 79] and SADT-based mechanisms [Ross 
77] provide support for the static specification of environment components, but have a 
naive interconnection dependence representation model. Dataflow diagrams are another 
static modeling facility which completely lacks the notion of controlling the flow of data 
which we consider essential for process modeling. The interconnection and dependence 
information in VDM-based systems [Terwilliger 87] are totally implicit, and hence the 
complex task of understanding such relations is the user's responsibility. Process model­
ing needs powerful capabilities which allow viewing of the process from different per­
spectives and at different levels of abstraction. It also requires integrating both static 
and dynamic modeling techniques in to a single and uniform technique. Meteor provides 
such a considerable and powerful modeling mechanism. 
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The brief introduction to :Vfeteor given in this section is aimed at showing how 
~fete or provides a new paradigm for environment integration which is based upon expli­
cit modeling of the underlying process. In these models, the different roles of the 
environment components are specified and instances of these specifications are in tercon­
nected in a simple manner to compose the program describing the process. User 
actions may cause automatic activation and execution of one of the processing cycles of 
the process, if these actions are execution requests. However, if user actions take the 
form of process main terrance requests, the model will automatically adjust itself to the 
changes requested and propagate the effect of these changes to maintain the previous 
execution history of the process. 

Actually, i'v1eteor is a programmable virtual machine for modeling and interpreting 
software processes. Process components (e.g. tools and humans' roles) communicate 
via flowing information carriers which capture properties of objects and store them in a 
powerful programmable common object base. It also controls the versions of objects 
produced by processes by maintaining the history of the properties of these objects. In 
fact, both the object base and the processes are all represented (simulated) in a com­
mon internal structure which explicitly represents most of the relations interconnecting 
process components and objects, and provides them with automatic maintenance facili­
ties. Hence, there exist no actual bounds, at the interpretation level, separating any of 
the environment's components. In addition, both foreign and specially designed tools 
are treated equally in_ this system. 

A brief description of Meteor, with a few elaborations where most needed, follows. A 
complete description of Meteor can be found in [Gamal 89]. 

4.1. Introduction to ~teor. 
Meteor bases its modeling techniques on an adapted version of dataflow architec­

tures [Thakkar 87] which, in eliminating unnecessary statement orderings, do a good job 
of showing the concurrency which is one key characteristic of software processes. For­
tunately, dataflow diagrams had been proven [Kavi 87] to be equivalent to Petri nets 
[Peterson 81] for which there exists a large body of theoretical work [Reisig 85]. Thus 
we can draw upon this work in proving properties of the models built with Meteor. 

Meteor models are composed mainly of two classes of components - objects and 
relations. Objects are interconnected by the appropriate relations. Relations are 
represented by frames which are programmable representations of the various relations' 
properties. All frames have input and output ports, and an object (or a frame instance) 
may be connected to any of the input or output ports of any other frame instance by 
means of a unidirectional pipeline. The direction of the pipeline determines the direc­
tion of flow of information carriers (tokens) from one node to the other in the model 
net, formed by the frame instances and connecting pipelines. Token flow is controlled 
by control constructs which conditionally synchronize and manage token routing and 
flow. Frame ports are typed so that when a composite token is received, an automatic 
coercion process takes place to filter out unwanted information. Ports are considered 
storage places whose ordering algorithms are predefined as part of their type definitions. 
They store tokens until their frames are ready to process those tokens. 

An informal description and further refinment of Meteor's components are given in 
the next section. Figure 3 shows a simple example, the details of which are explained in 
Section 4.3. In this figure a Meteor model expressing the workings of a procedure "max" 
which computes the maximum of two values is shown. The "execution mode" of this 
model is programmed such that the "<" frame executes once it receives both tokens at 
its input ports. Those tokens, actually, carry all properties of the corresponding objects, 
e.g. value and type. In this example, the "<" frame is assumed to produce either a 
"Yes" or "No" token at its output port based on the result of the comparison. This 
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Figure 3. An Example of Modeling "ma.x" with Meteor Formalism. 

token is then used as the condition for the control gates which manage the flow of data 
to the "print" frames. To explain the model of information propagation, let us assume 
that each of the objects "a" and "b" has two attributes, namely value and type. Both of 
these attributes will flow through the whole net, however the control constructs will 
allow only one "print" frame to fire and execute. Since only the "print" frame needs 
value attributes, its input port will automatically detect and keep the attribute that is 
needed and filter the other one out. The importance of this model is not simply that it 
models the workings of the max function, but that it also models relations and depen­
dencies which can be used to indicate all changes which must be made if certain 
changes to max (e.g. changing the types of its operands) are to be made. 

4.2. Inforrml Desc.ription of N.Eteor Ingredients. 
A frame contains a pre-programmed set of preconditions (firing rules) each of 

which is associated with an action which will be performed whenever this condition is 
satisfied. The frame fires by executing the actions associated with all the satisfied con­
ditions in a predefined priority order. These conditions are defined in terms of the 
existence of specific information types at the frame input ports. The actions in the first 
prototype of Meteor are not restricted to a specific syntax or semantics, instead they are 
simple procedure/function calls. Frame firing may result in producing a new set of 
tokens at its output ports which will then be broadcast through the network of frames 
by means of the connecting pipelines and under the control of the control constructs in 
the network. 
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For example, when a token is produced at the output ports of object "a" of Figure 
3. it automatically propagates through all the connecting pipelines to the input ports of 
both the "print" and "<" frames, according to the pre programmed communication con­
ventions of the pipeline. It should be noted that other modeling systems, such as SADT 
[Ross 77] and CORE [Mullery 79], provide similar capabilities for modeling systems by 
using frame like structures. However, their specifications and structures are not 
in ten ted to execute, and hence the semantics of their models are purely static. 

A "\feteor object is a frame with an associated state. Every object has its own con­
trol methods to manage accessing its state as well as the state's history (versions.) An 
object's input port accepts tokens carrying property change information which is then 
used to update the object state and to generate appropriate output tokens to broadcast 
the change over the net. Thus every object is able to meet its own object management 
needs internally. Consequently, this approach does not mandate a single strictly 
specified object manager with limited and predefined capabilities, but rather allows the 
user to easily build and expand object management capabilities using the same method 
and structure which are to be used in modeling the process itself. 

Tokens are used as information carriers to transfer information from one node to 
another in the model net. They take the form of a collection of attributes (the 
object's properties) with an indication of the recent actions (e.g. changed, deleted, etc.) 
to which the destinations are assumed to react. Because component types, such as 
frames, can be defined in isolation with no previous knowledge of how their instances 
are going to be connected, a token attribute representing a single object property may 
not always be understood at a destination port, and hence may automatically be 
filtered out. This actually matches the way maintainers usually think 1 and improves the 
model's understandability and modifiability. It also makes the component definitions 
highly reusable. 

The communication model of Meteor is unlike other message passing systems as 
the communication partners have no predefined agreements on the message formats. It 
also differs from the object-oriented model of communication (e.g. in Smalltalk [Gold­
berg 83]) in which all objects are allowed to communicate with all other objects that 
understand their messages. These systems, theoretically, do not restrict communication 
to a-limited set of objects and therefore allow malicious objects to be very disruptive. 
Maintaining and debugging such systems are not easy tasks. Pipelines are the major 
communication method in Meteor models. Although a pipeline is a unidirectional infor­
mation flow channel, two-way communication can be provided by defining a pair of uni­
directional pipelines. The method of communication carried out by those pipelines can 
be dynamically chosen from among several preprogrammed methods, e.g. remote pro­
cedure call, direct call, or token memory sharing. Such flexibility of communication 
enables the execution agents (e.g. frames) to be modeled on different processors of a 
pipelined machine or a network, or even by a separate active process on the same 
machine. This, in fact, matches our observations about models of software processes, 
and is consistent with our belief that humans should be considered to be execution pro­
cessors. 

Software processes need to control and synchronize the activation of their com­
ponents. Every traditional programming language has its own paradigm of explicit or 
implicit control, and so should process programming languages. However, we believe 
that explicit control is more appropriate for modeling purposes, as this eases the model 
prototyping process and simplifies prototype evaluation and tuning. Meteor provides a 
primitive set of control constructs together with a set of combining operators which 

1 We believe that maintainers usually start by localizing their understandings and analyses be­
fore building a full model of their program. Delocalization is then gained by following intercon­
necting relations (Letovsky 86]. 
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allows the user to expand and tailor the set of control constructs. Interestingly. this 
modeling approach draws heavily upon primitives used in logic circuit design. For 
example, conditioned gates control the flow of tokens in 1- .M (multiplexors), ~1-1 
(demultiplexors), or M-M (a combination of both) input-output gates. The conditions 
are logical expressions concerning token existence in specific places and ports. In addi­
tion, every component, frame, and control construct, has a condition port which plays 
an important role in deciding on the execution of a component. To explain, the tokens 
generated at the output port of object "a" of Figure 3 flows to both "<" and "print" 
frame input ports. However, although the firing condition of the "print" frame are 
satisfied, the frame will not execute until its control condition is satisfied, and this is 
determined by the .. decision" component. These condition ports use a three-valued 
logic in which an undefined state is complementary to the Yes/No states. When a 
frame receives a Yes condition it starts checking its firing conditions. When it gets a 
No condition, it automatically disposes all the tokens available at its input ports. It 
keeps busy waiting until any of these conditions occurs. 

Meteor also recognizes the need for constraint propagation and consistency verifi­
cation. Object management systems need to maintain the consistency of their object 
bases in accordance with a predefined set of local constraints. On the other hand, the 
continuous evolution of process models, especially during the course of their execution, 
requires constraint verification after every transaction not only for the object base but 
also for the model structure. Every frame and object can specify its own set of con­
straints regarding its internal consistency and its connectivity. It may also impqse some 
restrictions on the overall model structure. The former type of constraint is expressed 
in predicate calculus and is manipulated locally. However, the latter type is expressed 
in temporal logic and is handled globally by the underlying system interpreter. 

Figure 4 shows the major phases of a Meteor model llfecycle-type definition, 
model (object manager and process program) construction, instantiation, and interpre­
tation. 

Process Type 

Static Instance 

Figure 4. A Simplified lifecycle for Meteor Models. 

Process 
Interpretation 

Eventually, the process model including all its execution state history is stored in a pro­
cess library. It then may be reactivated for product-related maintenance. This cycle 
may be interrupted at any time for maintenance purposes. A detailed description of 
each of these phases, together with the discussion of their roles in supporting process 
modeling according to our dynamic view of the process-centered life cycle paradigm, can 
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be found in [Carnal 88-d]. 

4.3. An Example. 

We now show how the :'vfeteor formalism aids the main terrance process by 
automating change propagation and constraint verification. The example in Figure 3 
shows a Meteor model of the "max" function. We now show how equivalent models can 
be automatically generated. If evaluation metrics exist, the best of these models can be 
automatically selected. This example will also show the benefits of Meteor for mainte­
nance by showing how it supports the automatic propagation of change requests, and 
the concept of dynamic maintenance. Finally, the "max" model is used to demonstrate 
blackbox reuse [Carnal 88-c] by developing a model for "Max", the function that com­
putes the maximum value of an list of objects. 

Process l\1odeling. Figure 3 shows the representation of the semantics of "max" 
using predefined frames (" <" and "print") and control constructs. Frame types are 
expected to be defined from the specifications of the process/programming language 
used, while the definitions of control components are constructs of the Meteor formal­
ism. Compound constructs, for both activities (frames) and control, can also be user 
defined. The semantics of the model can then be transformed into the equivalent 
pseudo code shown. Upon receiving input tokens representing the availability of the 
input parameters, the model executes as described in the previous section. 

If the user decides to use a model of the same function, having a single exit, the 
model shown in Figure 5.a might be built. An optimization algorithm might even be 
used to eliminate both ":=" frames, and then generate the model shown in Figure 5.b 
which is equivalent to the conditional expression which might be written in C. Again, 
an automatic transformation can further refine the 2-1 gate into two 1-1 gates to result 
in the equivalent model shown in Figure 5.c which is almost identical to the one we 
started with, shown in Figure 3. Appropriate evaluation metrics can be employed for 
selecting the best of these models. Of course, several other equivalent models can be 
developed using different frame definitions. 

rvfaintenance. Several kinds of maintenance and change requests can now be 
considered. Some of these requests may require changing some properties of objects, 
others may entail changing the model's structure. We now give some examples. 

Assume that there are only two object properties for "a" and "b" in the "max" 
model shown in Figure 3, namely value and type. Now consider a maintenance request 
to change the value of object "b". For simplicity, let us assume a request to change the 
value in the current state rather than in any of the historical states. This change is 
represented by a request token which is imposed at the input port of "b "'s representa­
tion. Object "b" studies the effect of such a change on its properties and creates a 
new version of the changed properties. The result is then broadcast by the release of a 
token from its output port to the rest of the net. When this token reaches the input 
port of the "<" frame, that frame reacts. Note that the reaction of the frame in the 
context of this maintenance view should differ from its reaction in the normal execution 
view. In the change view the frame firing rule is programmed to require only one of its 
input ports to be enabled by a change request token, while in the execution view it will 
require both inputs to be enabled. When the port connected to "b" is enabled, the 
frame fires and pulls down the appropriate old value of "a" which is then compared with 
the new value of "b" and the result propagates. It should be noted that whenever a 
new value is found equivalent to an old value in a maintenance view of a model, token 
generation and propagation will stop. So if, for instance, the old value of "b" is found 
to be equal to the new one, the object "b" will not broadcast any tokens and no further 
propagation will take place. 
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Figure 5. Different Models for "max". 

Now consider a change request which asks for a change to the type of "b ". In this 
case the value of "b" also may be affected and hence both of these properties will be 
broadcast. The "<" frame may be programmed to include type verification as part of 
its local constraints. The model will then behave as before if there are no violations. 
However if some constraints have now been violated, an error token must now be emit­
ted. This may, for example, prompt the user and might cause the whole change 
request transaction to be reconsidered. 

The program structure may be maintained by replacing, deleting, or adding any of 
the model components (including connecting pipelines.) Every component must be 
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programmed for the appropriate reaction to each of these kinds of change. For exam­
ple, if the "<" frame in our example is replaced by a ">" frame to generate a "min" 
function model instead, the maintenance metalevel (see [Carnal 88-d]) to which both 
frame types belong will automatically take the appropriate action. This action is usu­
ally to release a set of tokens locally in the model, and then propagate them to update 
the execution history. So, in our example such a change will require pulling the 
appropriate values of both "a" and "b" down starting at the execution state at which 
the change is applied, and continuing execution as described earlier. Changes like 
disconnection, connection, addition, and deletion are treated similarly. 

Figure 6 shows a model which demonstrates blackbox maintenance. 

print 

Figure 6. Meteor Model for "Max". 

A model of a procedure which prints the maximum value of a list of objects is developed 
using "max". A new frame "Max" is defined which abstracts "max" into a single frame. 
"Max" has a queue type input port which will be connected to the list. "Max" will pro­
cess one of the tokens in its input port at a time. No output will be printed except 
upon consuming all the tokens in the queue. It must be noted that in Meteor an 
undefined state is a real state which is represented by the nonexistence of tokens. So, 
"Max" can be programmed to print the value of the input token if the other port is in 
an undefined state. 

This example indicates the use of Meteor as an environment integration mechan­
ism. It shows not only how Meteor can integrate all tools and subprocesses through a 
common object base in which all objects are stored and managed, but also how it links 
all of these subprocesses in a uniform way for smooth information flow. Every subpro­
cess may be abstracted into a single frame and connected to the other subprocesses. 
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Different abstraction levels as weU as different model views are also supported. The 
independence of the component definitions and the information flow model of Yleteor 
simplifies the development and integration of even foreign tools and subprocesses. 

5. The Architecture of the Orbit Enviroillrent Prototype 
The Nfeteor formalism has been found to be a powerful and flexible aid in model­

ing internal representations of classical application programs. It not only allows explicit 
pictorial representation of all implicit interdependencies and program relations but also 
supports the automation of change propagation. In fact, the Meteor representation pro­
vides the right support for process environments having such properties as dynamic and 
incremental adaptability, reusability of components, and new tool incorporation, as 
described in [Gamal 88-b,c]. Although Meteor provides the right mechanism for build­
ing such application environments, it itself needs a support environment. 

Orbit is a prototype for a meta environment to support developing and maintain­
ing process environments represented by the Meteor modeling formalism. It is designed 
around the environment requirements described in section 3. The Orbit design bor­
rows features from earlier, more classical environments, to elegantly integrate applica­
tions and their environments into a single space allowing the user to manipulate the 
structure of both types of programs - process and application - without decreasing 
their portability. This is done by using the Meteor formalism. 

5.1. High Level .Architecture. 
Before describing the environment structure and the semantics it provides for 

modeling processes, we briefly discuss the meta-process underlying the development of a 
new process environment and the interactions and roles of experts in this process. Fig­
ure 7 shows a process environment production process. The meta-process starts by 
defining the specifications of the application process based on available resources and 
requirements. These specifications are then compared against existing processes in a 
process library. The optimum process is then selected and statically maintained to fulfill 
the new requirements. An instance of this process can now be activated, and the pro­
duct cycle starts (see Figure 1 for the process-centered lifecycle.) Tools, according to 
process programming, are considered as operators in the classical programming sense. 
New tools can be easily integrated into an application process after their semantics are 
described using the Meteor formalism. This formalism specifies the operational require­
ments of the tool as well as some maintenance-related knowledge (see section 8.) Con­
tinuous monitoring and evaluation can then be used to dynamically adapt the process 
to achieve optimum results. All of these activities are done incrementally so that they 
can be employed for both the static and the dynamic cycles of the process-centered 
lifecycle. 

This process can start even with an only partially defined specification, such as a 
high level process outline. For example, Figure 8 shows how experts at different levels 
can interact with each others. When a higher level expert modifies the process at his or 
her level, other appropriate experts will then be prompted for dynamic incremental 
adaptation of their processes. This is typically how processes are developed through 
maintenance. The explicit definition of the roles, skills, and knowledge levels of experts 
is a step towards increased process automation. The application of expert knowledge 
seems effective in augmenting partially understood processes. 

Orbit will also be able to readily support the incorporation of new tools into pro­
cess environments, whether or not the tool was produced under Orbit-like support. 
Figure 9.a illustrates this. An example of a plausible structure of a two way translation 
system may be as shown in Figure 9.b. Program portability is supported because once 
such translators exist, a program developed outside Orbit may be easily integrated. 
Furthermore, this approach provides a highly integrable multilingual environment 
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Figure 7. Abstract Model of Orbit's Underlying Process. 
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Figure 8. Orbit's Model of Incremental Dynamic Implementation and Adaptation. 
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Figure 9.a. Two-way Translation for Meteor Models 
and Process Programs. 

which easily incorporates foreign tools. It also generates highly portable application 
environments. 

A process engineer or an expert may interact with Orbit in variety of ways. As 
shown in Figure 2 every process engineer can maintain his or her own view and abstract 
level of a process by maintaining either of its model representations - process program 
code in some textual representation or the unique representation of the Meteor internal 
structure formalism through a monitoring facility. Whenever an incorrect structure or 
inconsistent execution state is encountered due to either a faulty design or a change 
request, exceptions will be raised and appropriate parties will be informed. Mainte­
nance requests are specified as nested transactions. At the end of every transaction or 
maintenance session, both the process model and its history of execution states are 
analyzed against their preprogrammed constraints. ·Temporal logic is used in Meteor 
to specify constraints on process execution histories. Appropriate constraint rules are 
automatically invoked whenever a relevant parameter is updated, and Orbit modifies 
state histories as needed. This maintenance of execution histories is an important and 
unique Orbit feature. 

As noted earlier (e.g. see Figure 1 and Figure 7), products can be maintained by 
maintaining their developing processes. This implies that both the process and its pro­
ducts are considered to be integral components (see Figure 10) of Orbit. It also implies 
that once a process is instantiated and activated it never dies or terminates, unless that 
is explicitly requested (see Figure 11 ). Whenever a process description is needed to 
carry out a certain task, a new process instance will be created and activated. After 
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Figure 9.b. A Tool Kit Environment to Support the Translation Process. 

finishing its programmed task, the process instance together with its products must be 
stored in a process store and kept in an idle state waiting for reactivation for product 
maintenance. Thus an execution state history is part of a process instance. This model 
unifies the definition of both classical programs and processes, in the sense that data 
objects never outlive their programs. Note that a process reactivation may lead to 
automatic reactivation of several other coprocesses which are all involved in supporting 
a higher level process. This is due to the interconnection of products and their 
processes as is shown in Figure 10. On the other hand, another instance of the same 
process program may also be instantiated for a different application or it may even be 
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Figure 10. Process Models and Their Products are a Single Integral Entity. 

statically maintained to produce a different version of the process description. 
A simplified structure of Meteor, the central component of the meta-environment 

"Orbit" which supports process development/maintenance, is shown in Figure 12. Three 
main stores of information - a tool and process definition library, an object history, 
and a process model- are each incrementally managed by a separate manager, yet all 
are kept formally consistent. The Meteor formalism is used to represent stored informa­
tion for each store. Any incremental environment modifications are directed to the 
appropriate maintainer (manager) of each of these stores for evaluation, checking, and 
integration. Modifications to any of these stores may automatically trigger other 
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Figure 11. A Model for Dynamic Instantiation, Execution, Retrieval, 
and Maintenance of Meteor Models. 

actions which may propagate to other stores depending on the interconnection of the 
process model components and their semantics. Detailed descriptions of each of these 
stores and how they define the objects with which they deal are omitted here, but can 
be found in [Gamal 88-d]. 

Finally, it is worth noting that we consider the user interface to be an important 
environment integration component. The user interface descriptions for every subpro­
cess in a process environment are assumed to be defined by the tools operated by these 
subprocesses. However, it is important that the user must feel no differences when mov­
ing among the different subprocesses, because of differences in their user interfaces. 
Meteor supports this by using its internal representation formalism at the lower levels to 
represent the appropriate interfaces to various tools. A similar mechanism (e.g. Chiron 
[Young 88]) which is outside the scope of this paper must exist for higher level user 
interfaces. 
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Figure 12. The Architecture of Meteor's Interpreter and Support. 

6. Conclusions and Future Work 
We will continue this research in a number of ways. Although we have modeled 

several programs in both the process and application domains using Meteor's formal­
isms, we expect to continue developing more complex models which will lead to further 
elucidation of software process modeling, and to better understanding of the different 
approaches to it. In developing more process models we will move in three separate 
directions. We will develop process models to describe a wider range of software 
processes, such as requirement specification, design, and coding processes. We will also 
elaborate the process models which we currently have to lower levels of detail in order 
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to make them more complete and to gain deeper understanding of how humans perform 
such tasks so that we can determine those parts of a process which can be automated 
by expert systems. These two directions will serve as a testbed for validating the ideas 
presented here. They will also help us to improve the :Vfeteor formalism. Although 
:VIeteor is a plausible visual process programming formalism, we feel that we still need to 
create more formalized specifications and design a higher level language front end which 
will allow us to capture Meteor formalisms in code. So, we will also try to use these 
models to understand how users like to interact with the system and how they like to 
specify their processes so that we can develop a user-centered process programming 
language which captures the lVfeteor formalism. 

:Vfeteor has been developed in C++. In addition, we are also beginning the 
development of an Orbit prototype. vVe will attempt to validate the ideas which we 
presented here, especially those related to our new maintenance perspectives and to 
using advanced maintenance techniques in development, as product-related process 
maintenance is an essential goal of this research. We also want to investigate the power 
of Meteor as an environment integration facility and virtual machine. In addition, 
although the current implementation of Meteor is running on a single processor 
machine, the inherent concurrency support characteristic of Meteor encourages us to 
consider studying its implementation on an MIMD machine or computer network. 
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